Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38557616

RESUMEN

A novel method for tracking the tidal volume (TV) from electrocardiogram (ECG) is presented. The method is based on the amplitude of ECG-derived respiration (EDR) signals. Three different morphology-based EDR signals and three different amplitude estimation methods have been studied, leading to a total of 9 amplitude-EDR (AEDR) signals per ECG channel. The potential of these AEDR signals to track the changes in TV was analyzed. These methods do not need a calibration process. In addition, a personalized-calibration approach for TV estimation is proposed, based on a linear model that uses all AEDR signals from a device. All methods have been validated with two different ECG devices: a commercial Holter monitor, and a custom-made wearable armband. The lowest errors for the personalized-calibration methods, compared to a reference TV, were -3.48% [-17.41% / 12.93%] (median [first quartile / third quartile]) for the Holter monitor, and 0.28% [-10.90% / 17.15%] for the armband. On the other hand, medians of correlations to the reference TV were higher than 0.8 for uncalibrated methods, while they were higher than 0.9 for personal-calibrated methods. These results suggest that TV changes can be tracked from ECG using either a conventional (Holter) setup, or our custom-made wearable armband. These results also suggest that the methods are not as reliable in applications that induce small changes in TV, but they can be potentially useful for detecting large changes in TV, such as sleep apnea/hypopnea and/or exacerbations of a chronic respiratory disease.

2.
Animals (Basel) ; 14(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38473127

RESUMEN

A retrospective study of microbiological laboratory results from 2020 to 2022, obtained from a veterinary diagnostic laboratory of the island of Gran Canaria, Spain, focused on canine otitis cases, was performed. The objective of this study was to analyze the pathogen distribution, antimicrobial susceptibility, prevalence of multidrug resistant phenotypes and the role of coinfections in otitis cases in order to provide up-to-date evidence that could support effective control strategies for this prevalent pathology. A total of 604 submissions were processed for the diagnosis of canine external otitis. Of the samples analyzed, 472 were positive for bacterial or fungal growth (78.1%; 95% CI: 74.8-81.4%). A total of 558 microbiological diagnoses were obtained, divided in 421 bacterial (75.4%; 95% CI: 71.8-79.0%) and 137 fungal (24.6%; 95% CI: 20.9-28.1%) identifications. Staphylococcus pseudintermedius, Malassezia pachydermatis and Pseudomonas aeruginosa were the most prevalent microorganisms detected in clinical cases of otitis. High level antimicrobial resistance was found for Pseudomonas aeruginosa (30.7%), Proteus mirabilis (29.4%), Staphylococcus pseudintermedius (25.1%) and Escherichia coli (19%). Multidrug-resistant phenotypes were observed in 47% of the bacteria isolated. In addition, a 26.4% prevalence of methicillin-resistant Staphylococcus pseudintermedius was detected. The high prevalence of antimicrobial resistant phenotypes in these bacteria highlights the current necessity for constant up-to-date prevalence and antimicrobial susceptibility data that can support evidence-based strategies to effectively tackle this animal and public health concern.

3.
J Chem Educ ; 101(1): 104-112, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38362137

RESUMEN

Calculating analytical uncertainties as a part of method validation is a relevant aspect of field and laboratory practices in instrumental analytical chemistry subjects, which usually require complex algorithms. This work describes the development and didactic use of an automatic and straightforward informatics tool, implemented in an Excel macro, for calculating and interpreting the uncertainty of an analytical method against a reference method on field measurements. The software was initially developed for field testing of low-cost air quality monitoring analytical methods against reference methods, and the present work shows its adaptation to a didactic environment. The uncertainty calculation software was implemented through an Excel macro based on Visual Basic as a graphical user interface. It finds a best-fit line that describes the relation between concentrations determined by the candidate and reference methods. The software generates the analytical validation results (slope and intercept with their respective confidence limits, and expanded uncertainty of a concentration determined by the candidate method), hiding the intermediate functions and calculations. The Excel interface eases uncertainty calculations for undergraduate students, although the background mathematics can be quickly unveiled to students for didactic purposes. This tool has been applied to a laboratory exercise focused on validating experimental results obtained in the measurement of ozone levels in ambient air by passive sampling and spectrophotometric detection. The uncertainty calculation software has proved valuable by providing the student a resource to check the analytical quality of the data generated in the laboratory, while assimilating the fundamentals behind the calculations.

4.
Pediatr Pulmonol ; 59(1): 111-120, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37850730

RESUMEN

BACKGROUND: Obstructive sleep apnea (OSA) is a risk factor for metabolic syndrome (MetS) in adults, but its association in prepubertal children is still questionable due to the relatively limited cardiometabolic data available and the phenotypic heterogeneity. OBJECTIVE: To identify the role of OSA as a potential mediator of MetS in prepubertal children. METHODS: A total of 255 prepubertal children from the Childhood Adenotonsillectomy Trial were included, with standardized measurements taken before OSA treatment and 7 months later. MetS was defined if three or more of the following criteria were present: adiposity, high blood pressure, elevated glycemia, and dyslipidemia. A causal mediation analysis was conducted to assess the effect of OSA treatment on MetS. RESULTS: OSA treatment significantly impacted MetS, with the apnea-hypopnea index emerging as mediator (p = .02). This mediation role was not detected for any of the individual risk factors that define MetS. We further found that the relationship between MetS and OSA is ascribable to respiratory disturbance caused by the apnea episodes, while systemic inflammation as measured by C-reactive protein, is mediated by desaturation events and fragmented sleep. In terms of evolution, patients with MetS were significantly more likely to recover after OSA treatment (odds ratio = 2.56, 95% confidence interval [CI] 1.20-5.46; risk ratio = 2.06, 95% CI 1.19-3.54) than the opposite, patients without MetS to develop it. CONCLUSION: The findings point to a causal role of OSA in the development of metabolic dysfunction, suggesting that persistent OSA may increase the risk of MetS in prepubertal children. This mediation role implies a need for developing screening for MetS in children presenting OSA symptoms.


Asunto(s)
Síndrome Metabólico , Síndromes de la Apnea del Sueño , Apnea Obstructiva del Sueño , Adulto , Niño , Humanos , Síndrome Metabólico/complicaciones , Síndrome Metabólico/epidemiología , Síndromes de la Apnea del Sueño/diagnóstico , Apnea Obstructiva del Sueño/complicaciones , Apnea Obstructiva del Sueño/epidemiología , Apnea Obstructiva del Sueño/diagnóstico , Factores de Riesgo , Obesidad/complicaciones
5.
Artículo en Inglés | MEDLINE | ID: mdl-37948138

RESUMEN

Obstructive sleep apnea (OSA) is a high-prevalence disease in the general population, often underdiagnosed. The gold standard in clinical practice for its diagnosis and severity assessment is the polysomnography, although in-home approaches have been proposed in recent years to overcome its limitations. Today's ubiquitously presence of wearables may become a powerful screening tool in the general population and pulse-oximetry-based techniques could be used for early OSA diagnosis. In this work, the peripheral oxygen saturation together with the pulse-to-pulse interval (PPI) series derived from photoplethysmography (PPG) are used as inputs for OSA diagnosis. Different models are trained to classify between normal and abnormal breathing segments (binary decision), and between normal, apneic and hypopneic segments (multiclass decision). The models obtained 86.27% and 73.07% accuracy for the binary and multiclass segment classification, respectively. A novel index, the cyclic variation of the heart rate index (CVHRI), derived from PPI's spectrum, is computed on the segments containing disturbed breathing, representing the frequency of the events. CVHRI showed strong Pearson's correlation (r) with the apnea-hypopnea index (AHI) both after binary (r=0.94, p 0.001) and multiclass (r=0.91, p 0.001) segment classification. In addition, CVHRI has been used to stratify subjects with AHI higher/lower than a threshold of 5 and 15, resulting in 77.27% and 79.55% accuracy, respectively. In conclusion, patient stratification based on the combination of oxygen saturation and PPI analysis, with the addition of CVHRI, is a suitable, wearable friendly and low-cost tool for OSA screening at home.

6.
Physiol Meas ; 44(11)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37494945

RESUMEN

Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology.


Asunto(s)
Fotopletismografía , Dispositivos Electrónicos Vestibles , Monitores de Ejercicio , Procesamiento de Señales Asistido por Computador , Frecuencia Cardíaca/fisiología
7.
Eur Heart J ; 44(29): 2698-2709, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37339167

RESUMEN

AIMS: Epigenetic age is emerging as a personalized and accurate predictor of biological age. The aim of this article is to assess the association of subclinical atherosclerosis with accelerated epigenetic age and to investigate the underlying mechanisms mediating this association. METHODS AND RESULTS: Whole blood methylomics, transcriptomics, and plasma proteomics were obtained for 391 participants of the Progression of Early Subclinical Atherosclerosis study. Epigenetic age was calculated from methylomics data for each participant. Its divergence from chronological age is termed epigenetic age acceleration. Subclinical atherosclerosis burden was estimated by multi-territory 2D/3D vascular ultrasound and by coronary artery calcification. In healthy individuals, the presence, extension, and progression of subclinical atherosclerosis were associated with a significant acceleration of the Grim epigenetic age, a predictor of health and lifespan, regardless of traditional cardiovascular risk factors. Individuals with an accelerated Grim epigenetic age were characterized by an increased systemic inflammation and associated with a score of low-grade, chronic inflammation. Mediation analysis using transcriptomics and proteomics data revealed key pro-inflammatory pathways (IL6, Inflammasome, and IL10) and genes (IL1B, OSM, TLR5, and CD14) mediating the association between subclinical atherosclerosis and epigenetic age acceleration. CONCLUSION: The presence, extension, and progression of subclinical atherosclerosis in middle-aged asymptomatic individuals are associated with an acceleration in the Grim epigenetic age. Mediation analysis using transcriptomics and proteomics data suggests a key role of systemic inflammation in this association, reinforcing the relevance of interventions on inflammation to prevent cardiovascular disease.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Persona de Mediana Edad , Humanos , Multiómica , Aterosclerosis/genética , Inflamación/genética , Epigénesis Genética , Factores de Riesgo
9.
Nat Commun ; 14(1): 1122, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854674

RESUMEN

The mechanisms triggering metastasis in pheochromocytoma/paraganglioma are unknown, hindering therapeutic options for patients with metastatic tumors (mPPGL). Herein we show by genomic profiling of a large cohort of mPPGLs that high mutational load, microsatellite instability and somatic copy-number alteration burden are associated with ATRX/TERT alterations and are suitable prognostic markers. Transcriptomic analysis defines the signaling networks involved in the acquisition of metastatic competence and establishes a gene signature related to mPPGLs, highlighting CDK1 as an additional mPPGL marker. Immunogenomics accompanied by immunohistochemistry identifies a heterogeneous ecosystem at the tumor microenvironment level, linked to the genomic subtype and tumor behavior. Specifically, we define a general immunosuppressive microenvironment in mPPGLs, the exception being PD-L1 expressing MAML3-related tumors. Our study reveals canonical markers for risk of metastasis, and suggests the usefulness of including immune parameters in clinical management for PPGL prognostication and identification of patients who might benefit from immunotherapy.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Neoplasias Primarias Secundarias , Paraganglioma , Feocromocitoma , Humanos , Neoplasias de las Glándulas Suprarrenales/genética , Genómica , Paraganglioma/genética , Paraganglioma/inmunología , Feocromocitoma/genética , Feocromocitoma/inmunología , Microambiente Tumoral/genética
10.
Comput Biol Med ; 154: 106549, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36706566

RESUMEN

Heart rate variability (HRV) is modulated by sleep stages and apneic events. Previous studies in children compared classical HRV parameters during sleep stages between obstructive sleep apnea (OSA) and controls. However, HRV-based characterization incorporating both sleep stages and apneic events has not been conducted. Furthermore, recently proposed novel HRV OSA-specific parameters have not been evaluated. Therefore, the aim of this study was to characterize and compare classic and pediatric OSA-specific HRV parameters while including both sleep stages and apneic events. A total of 1610 electrocardiograms from the Childhood Adenotonsillectomy Trial (CHAT) database were split into 10-min segments to extract HRV parameters. Segments were characterized and grouped by sleep stage (wake, W; non-rapid eye movement, NREMS; and REMS) and presence of apneic events (under 1 apneic event per segment, e/s; 1-5 e/s; 5-10 e/s; and over 10 e/s). NREMS showed significant changes in HRV parameters as apneic event frequency increased, which were less marked in REMS. In both NREMS and REMS, power in BW2, a pediatric OSA-specific frequency domain, allowed for the optimal differentiation among segments. Moreover, in the absence of apneic events, another defined band, BWRes, resulted in best differentiation between sleep stages. The clinical usefulness of segment-based HRV characterization was then confirmed by two ensemble-learning models aimed at estimating apnea-hypopnea index and classifying sleep stages, respectively. We surmise that basal sympathetic activity during REMS may mask apneic events-induced sympathetic excitation, thus highlighting the importance of incorporating sleep stages as well as apneic events when evaluating HRV in pediatric OSA.


Asunto(s)
Síndromes de la Apnea del Sueño , Apnea Obstructiva del Sueño , Humanos , Niño , Frecuencia Cardíaca/fisiología , Polisomnografía , Fases del Sueño/fisiología
12.
Clin Transl Med ; 12(8): e1001, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35979662

RESUMEN

BACKGROUND: Comprehensive molecular studies on tumours are needed to delineate immortalization process steps and identify sensitive prognostic biomarkers in thyroid cancer. METHODS AND RESULTS: In this study, we extensively characterize telomere-related alterations in a series of 106 thyroid tumours with heterogeneous clinical outcomes. Using a custom-designed RNA-seq panel, we identified five telomerase holoenzyme-complex genes upregulated in clinically aggressive tumours compared to tumours from long-term disease-free patients, being TERT and TERC denoted as independent prognostic markers by multivariate regression model analysis. Characterization of alterations related to TERT re-expression revealed that promoter mutations, methylation and/or copy gains exclusively co-occurred in clinically aggressive tumours. Quantitative-FISH (fluorescence in situ hybridization) analysis of telomere lengths showed a significant shortening in these carcinomas, which matched with a high proliferative rate measured by Ki-67 immunohistochemistry. RNA-seq data analysis indicated that short-telomere tumours exhibit an increased transcriptional activity in the 5-Mb-subtelomeric regions, site of several telomerase-complex genes. Gene upregulation enrichment was significant for specific chromosome-ends such as the 5p, where TERT is located. Co-FISH analysis of 5p-end and TERT loci showed a more relaxed chromatin configuration in short telomere-length tumours compared to normal telomere-length tumours. CONCLUSIONS: Overall, our findings support that telomere shortening leads to a 5p subtelomeric region reorganization, facilitating the transcription and accumulation of alterations at TERT-locus.


Asunto(s)
Telomerasa , Neoplasias de la Tiroides , Humanos , Hibridación Fluorescente in Situ , Pronóstico , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/genética
13.
Chemosphere ; 307(Pt 3): 135948, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35963375

RESUMEN

Breathing poor-quality air is a global threat at the same level as unhealthy diets or tobacco smoking, so the availability of affordable instrument for the measurement of air pollutant levels is highly relevant for human and environmental protection. We developed an air quality monitoring platform that comprises a wearable device embedding low-cost metal oxide semiconductor (MOS) gas sensors, a PM sensor, and a smartphone for collecting the data using Bluetooth Low Energy (BLE) communication. Our own developed app displays information about the air surrounding the user and sends the gathered geolocalized data to a cloud, where the users can map the air quality levels measured in the network. The resulting device is small-sized, light-weighted, compact, and belt-worn, with a user-friendly interface and a low cost. The data collected by the sensor array are validated in two experimental setups, first in laboratory-controlled conditions and then against referential pollutant concentrations measured by standard instruments in an outdoor environment. The performance of our air quality platform was tested in a field testing campaign in Barcelona with six moving devices acting as wireless sensor nodes. Devices were trained by means of machine learning algorithms to differentiate between air quality index (AQI) referential concentration values (97% success in the laboratory, 82.3% success in the field). Humidity correction was applied to all data.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Dispositivos Electrónicos Vestibles , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Nube Computacional , Monitoreo del Ambiente/métodos , Humanos , Óxidos
14.
Sensors (Basel) ; 22(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35957328

RESUMEN

Heart rate variability (HRV) has been studied for decades in clinical environments. Currently, the exponential growth of wearable devices in health monitoring is leading to new challenges that need to be solved. These devices have relatively poor signal quality and are affected by numerous motion artifacts, with data loss being the main stumbling block for their use in HRV analysis. In the present paper, it is shown how data loss affects HRV metrics in the time domain and frequency domain and Poincaré plots. A gap-filling method is proposed and compared to other existing approaches to alleviate these effects, both with simulated (16 subjects) and real (20 subjects) missing data. Two different data loss scenarios have been simulated: (i) scattered missing beats, related to a low signal to noise ratio; and (ii) bursts of missing beats, with the most common due to motion artifacts. In addition, a real database of photoplethysmography-derived pulse detection series provided by Apple Watch during a protocol including relax and stress stages is analyzed. The best correction method and maximum acceptable missing beats are given. Results suggest that correction without gap filling is the best option for the standard deviation of the normal-to-normal intervals (SDNN), root mean square of successive differences (RMSSD) and Poincaré plot metrics in datasets with bursts of missing beats predominance (p<0.05), whereas they benefit from gap-filling approaches in the case of scattered missing beats (p<0.05). Gap-filling approaches are also the best for frequency-domain metrics (p<0.05). The findings of this work are useful for the design of robust HRV applications depending on missing data tolerance and the desired HRV metrics.


Asunto(s)
Benchmarking , Dispositivos Electrónicos Vestibles , Artefactos , Electrocardiografía , Frecuencia Cardíaca/fisiología , Humanos , Fotopletismografía
16.
Sensors (Basel) ; 22(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35162017

RESUMEN

We present a device based on low-cost electrochemical and optical sensors, designed to be attached to bicycle handlebars, with the aim of monitoring the air quality in urban environments. The system has three electrochemical sensors for measuring NO2 and O3 and an optical particle-matter (PM) sensor for PM2.5 and PM10 concentrations. The electronic instrumentation was home-developed for this application. To ensure a constant air flow, the input fan of the particle sensor is used as an air supply pump to the rest of the sensors. Eight identical devices were built; two were collocated in parallel with a reference urban-air-quality-monitoring station and calibrated using a neural network (R2 > 0.83). Several bicycle routes were carried out throughout the city of Badajoz (Spain) to allow the device to be tested in real field conditions. An air-quality index was calculated to facilitate the user's understanding. The results show that this index provides data on the spatiotemporal variability of pollutants between the central and peripheral areas, including changes between weekdays and weekends and between different times of the day, thus providing valuable information for citizens through a dedicated cloud-based data platform.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Ciclismo , Monitoreo del Ambiente , Material Particulado/análisis
17.
Front Endocrinol (Lausanne) ; 13: 1070074, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36760809

RESUMEN

Introduction: The percentage of patients diagnosed with pheochromocytoma and paraganglioma (altogether PPGL) carrying known germline mutations in one of the over fifteen susceptibility genes identified to date has dramatically increased during the last two decades, accounting for up to 35-40% of PPGL patients. Moreover, the application of NGS to the diagnosis of PPGL detects unexpected co-occurrences of pathogenic allelic variants in different susceptibility genes. Methods: Herein we uncover several cases with dual mutations in NF1 and other PPGL genes by targeted sequencing. We studied the molecular characteristics of the tumours with co-occurrent mutations, using omic tools to gain insight into the role of these events in tumour development. Results: Amongst 23 patients carrying germline NF1 mutations, targeted sequencing revealed additional pathogenic germline variants in DLST (n=1) and MDH2 (n=2), and two somatic mutations in H3-3A and PRKAR1A. Three additional patients, with somatic mutations in NF1 were found carrying germline pathogenic mutations in SDHB or DLST, and a somatic truncating mutation in ATRX. Two of the cases with dual germline mutations showed multiple pheochromocytomas or extra-adrenal paragangliomas - an extremely rare clinical finding in NF1 patients. Transcriptional and methylation profiling and metabolite assessment showed an "intermediate signature" to suggest that both variants had a pathological role in tumour development. Discussion: In conclusion, mutations affecting genes involved in different pathways (pseudohypoxic and receptor tyrosine kinase signalling) co-occurring in the same patient could provide a selective advantage for the development of PPGL, and explain the variable expressivity and incomplete penetrance observed in some patients.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Paraganglioma , Feocromocitoma , Humanos , Feocromocitoma/patología , Predisposición Genética a la Enfermedad , Paraganglioma/patología , Mutación , Neoplasias de las Glándulas Suprarrenales/diagnóstico
18.
Front Physiol ; 13: 960118, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699693

RESUMEN

The multidimensionality of the stress response has shown the complexity of this phenomenon and therefore the impossibility of finding a unique biomarker among the physiological variables related to stress. An experimental study was designed and performed to guarantee the correct synchronous and concurrent measure of psychometric tests, biochemical variables and physiological features related to acute emotional stress. The population studied corresponds to a group of 120 university students between 20 and 30 years of age, with healthy habits and without a diagnosis of chronic or psychiatric illnesses. Following the protocol of the experimental pilot, each participant reached a relaxing state and a stress state in two sessions of measurement for equivalent periods. Both states are correctly achieved evidenced by the psychometric test results and the biochemical variables. A Stress Reference Scale is proposed based on these two sets of variables. Then, aiming for a non-invasive and continuous approach, the Acute Stress Model correlated to the previous scale is also proposed, supported only by physiological signals. Preliminary results support the feasibility of measuring/quantifying the stress level. Although the results are limited to the population and stimulus type, the procedure and methodological analysis used for the assessment of acute stress in young people can be extrapolated to other populations and types of stress.

19.
Comput Methods Programs Biomed ; 214: 106527, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34879328

RESUMEN

OBJECTIVES: an evaluation of Principal Dynamic Mode (PDM) and Orthogonal Subspace Projection (OSP) methods to characterize the Autonomic Nervous System (ANS) response in three different hyperbaric environments was performed. METHODS: ECG signals were recorded in two different stages (baseline and immersion) in three different hyperbaric environments: (a) inside a hyperbaric chamber, (b) in a controlled sea immersion, (c) in a real reservoir immersion. Time-domain parameters were extracted from the RR series of the ECG. From the Heart Rate Variability signal (HRV), classic Power Spectral Density (PSD), PDM (a non-linear analysis of HRV which is able to separate sympathetic and parasympathetic activities) and OSP (an analysis of HRV which is able to extract the respiratory component) methods were used to assess the ANS response. RESULTS: PDM and OSP parameters follows the same trend when compared to the PSD ones for the hyperbaric chamber dataset. Comparing the three hyperbaric scenarios, significant differences were found: i) heart rate decreased and RMSSD increased in the hyperbaric chamber and the controlled dive, but they had the opposite behavior during the uncontrolled dive; ii) power in the OSP respiratory component was lower than power in the OSP residual component in cases a and c; iii) PDM and OSP methods showed a significant increase in sympathetic activity during both dives, but parasympathetic activity increased only during the uncontrolled dive. CONCLUSIONS: PDM and OSP methods could be used as an alternative measurement of ANS response instead of the PSD method. OSP results indicate that most of the variation in the heart rate variability cannot be described by changes in the respiration, so changes in ANS response can be assigned to other factors. Time-domain parameters reflect vagal activation in the hyperbaric chamber and in the controlled dive because of the effect of pressure. In the uncontrolled dive, sympathetic activity seems to be dominant, due to the effects of other factors such as physical activity, the challenging environment, and the influence of breathing through the scuba mask during immersion. In sum, a careful description of the changes in all the possible factors that could affect the ANS response between baseline and immersion stages in hyperbaric environments is needed for better interpretation of the results.


Asunto(s)
Sistema Nervioso Autónomo , Frecuencia Respiratoria , Frecuencia Cardíaca , Respiración , Sistema Respiratorio
20.
IEEE J Biomed Health Inform ; 26(2): 539-549, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34310329

RESUMEN

The main aim of this work is to study the effect of the sampling rate of the photoplethysmographic (PPG) signal for pulse rate variability (PRV) analysis. Forehead and finger PPG signals were recorded at 1000 Hz during a rest state, with red and infrared wavelengths, simultaneously with the electrocardiogram (ECG). The PPG sampling rate has been reduced by decimation, obtaining signals at 500 Hz, 250 Hz, 125 Hz, 100 Hz, 50 Hz and 25 Hz. Five fiducial points were computed: apex, up-slope, medium, line-medium and medium interpolate point. The medium point is located in the middle of the up-slope of the pulse. The medium interpolate point is a new proposal as fiducial point that consider the abrupt up-slope of the PPG pulse, so it can be recovered by linear interpolation when the sampling rate is reduced. The error performed in the temporal location of the fiducial points was computed. Pulse period time interval series were obtained from all PPG signals and fiducial points, and compared with the RR intervals obtained from the ECG. Heart rate variability and PRV signals were estimated and classical time and frequency domain indices were computed. The results showed that the medium interpolate point of the PPG pulse was the most accurate fiducial point under different PPG morphologies and sensor locations, when sampling rate was reduced. Being able to reduce the sampling rate to 50 Hz without causing significant changes in time and frequency indices, when medium interpolate point was used as fiducial point.


Asunto(s)
Fotopletismografía , Procesamiento de Señales Asistido por Computador , Electrocardiografía/métodos , Dedos , Frecuencia Cardíaca/fisiología , Humanos , Fotopletismografía/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...